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Implementation  and  Evaluation of a (b,k)-Adjacent  Error- 
Correcting/Detecting  Scheme  for  Supercomputer  Systems 

This paper describes a coding  scheme  developed for a specific su.uercomputer  architecture  and  structure.  The  code  considered is a 
shortened (b,k)-adjacent single-error-correcting double-errorprobabilistic-detecting code  with b = 5, k = 1, and code  group  width 
= 4. An evaluation of the probabilistic double-error-detection capability of  the code  was performed for drfferent organizations of the 
codingldecoding strategies for the codewords. This  led to the  selection of a system organization  encompassing  the  traditional 
feature of memory data error protection  and also providing for the  detection of major  addressing  errors  that may result from faults 
affecting the  interconnection  network  communication modules. The cost  of implementation is a limited amount  of extra  hardware 
and a negligible degradation in  the  double-error-detection properties of  the code. 

Introduction 
The requirement of superfast performance for large-scale su- 
percomputing systems has led to the development of  new 
types  of  highly  parallel architectures: tens (or more) of proc- 
essors concurrently working on different parts of the same 
problem. This trend has been  necessitated  by the speed  limi- 
tations of computer technologies,  such as gallium arsenide or 
Josephson junction devices,  which can increase computer 
speed only by about a factor of 10 with current uniproc- 
essor architectures [ 1,2], whereas multiprocessor architectures 
have the potential of providing much larger  speed  increases, 
from 1 0 0  to 1000 times the current speed. 

With  these new architectures, the analysis of systems  such 
as fusion  power  reactors, turbulent flow around ships or 
planes, and weather analysis and prediction would be  possible 
on a three-dimensional basis, applications that are practically 
unmanageable with  today's computer performance. Also, it 
should be noted that the solution of such 3-D models  would 
require not only  ultrahigh  speed but also a very  large primary 
memory of capacity up to 10" words [3]. With such large- 
capacity  memories, the problem of data protection against the 
effects  of errors becomes one of great  significance requiring 
particular attention. 

The study presented in this paper constitutes a contribution 
to this problem; it has been  developed in the framework of a 
large  ongoing project, currently funded in France, for  research 

and development in supercomputer systems. A core machine 
is currently being  developed to serve as a basis  upon  which 
more powerful  systems  can be built. It  is a multiple-instruction- 
stream, multiple-data-system (MIMD) machine intended for 
scientific computation and designed to act as an array proc- 
essor  when connected to a host computer system. This ma- 
chine is expected to provide an average computation speed of 
more than twenty  million  floating-point operations per  second 
(20 MFLOPS). The development of a machine aimed at an 
average computation speed in excess  of 100 MFLOPS and 
featuring more than lo8 words of primary memory  is  being 
planned. 

Clearly,  with  such a structure, the error-tolerance charac- 
teristics of main memory have to be carefully  investigated. 
Along  these  lines, a preliminary study was performed to 
identify and apply  possible solutions in the case  of the core 
machine. Although more restricted in size, this structure fea- 
tures most of the characteristics to be considered  for the 
development of a coding scheme that could  be  applied in 
future upgraded  systems. This study and the results obtained 
are presented in this paper. 

For this computer system, the choice of the code to protect 
information depends more upon the structural features of the 
core machine than upon the main memory features, so the 
core computer system  will  be  briefly described. As  shown in 
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Figure 1 Symmetric N X N Omega  network,  with N = 16. 

Figure 1, the core machine consists of  16 processor  modules 
(Po, PI, . . ., P I S )  interconnected, by means of a symmetric 
Omega-type interconnection network  [4], to I6 memory mod- 
ules (Ma, MI, . . . , MIS) which constitute the primary memory 
of the system. The processor  modules are composed of stand- 
ard array processors.  Each  such  processor  has a small  local 
memory protected by a single-error-correcting, double-error- 
detecting (SEC-DED)  modified Hamming code [5-71. The 
Omega-type  network was  selected  in order to provide an 
acceptable  tradeoff  between the amount of hardware and the 
necessary control complexity, flexibility,  rearrangeability,  de- 
lay,  etc. [8,9]. The memory modules are characterized by a 
capacity of 1M words of 64 bits  each.  These modules are 
composed of four banks of 64 data modules, each data module 
one bit wide and containing 256K  bits.  Initially, a SEC-DED 
modified Hamming code was envisioned for data protection. 

In  practice, the conceptual network of  Fig. 1 is  modified  as 
indicated in Figure 2. Each  network ensures bidirectional 
switching of B lines for  each terminal module; these  lines 
represent  address, data, control bits,  etc. Simultaneous switch- 
ing of these B bits  may be obtained by the superposition of B 
identical 1-bit-wide  slices.  However, for efficiency,  specific 
circuits allowing the switching of b bits in parallel  have  been 
developed [lo]. The network  can thus be  viewed as the super- 
position of [ B/b 1 slices ( [ B/b 1 represents the least  integer 
greater than or equal to B/b)  logically equivalent to the N X 

N Omega  network illustrated in Fig. 1 (where N = 16). 

The actual structure being implemented is  characterized by 
N = 16, B = 100, and b = 4. Each  slice  is made up of four 

160 identical stages  composed of eight (8 X 8) switching modules, 

each of them being able to take two  states: the through state 
and the cross state. The total number of switching modules in 
general is (N/2) [ B/b 1 log, N, so in this case 800 switching 
modules are used. 

The main structural modifications intended in order to 
reach  higher performance levels are 1) increasing the number 
of primary memory modules to about one hundred and 
providing double access  capability, 2) including a stage of 
specific computing modules, each connected to a memory 
module, working in single-instruction-stream, multiple-data- 
stream (SIMD) mode, and 3) extending the network connect- 
ing primary memory modules with the array processor mod- 
ules  working in MIMD mode. 

The major influences of these  modifications on the problem 
of primary memory protection are related to I )  the increase 
in the number of memory modules and in the resulting 
capacity of the primary memory, and 2) the increase in the 
size  of the network.  Both  factors  would tend to make the 
system much less  reliable and available. It thus appears that 
basically the same problems have to be  solved for both struc- 
tures in order to derive an efficient error-correcting scheme. 
This allows methods which  may  provide  sufficiently  high 
system  availability for the upgraded machine to be  tested and 
evaluated on the core machine. 

Determining the error correction and detection techniques 
for the data transmission and storage  subsystem of the core 
system  began  with a study of the effects  of the failures of  single 
components. Both the local memories in the sixteen  processors 
and the memory  modules will  be implemented by I-bit-wide 
data modules;  therefore,  single  failures  will produce single 
errors, and standard Hamming SEC-DED  codes  would  suffice. 
However,  as stated previously,  for circuit efficiency in the 
Omega  network, four bits are switched in parallel. Thus, a 
single component failure in one slice  of the Omega  network 
could produce any one of the fifteen  possible error patterns in 
the four bits of data, address, or control information being 
transmitted through that slice. Therefore, a single-bit  SEC- 
DED code  is inappropriate for transmissions between the 
processors and the main storage modules. A solution is to use 
a code which  is  SEC-DED for groups of four bits [ 1 I]. 

A practical implementation consideration was that the 
planned SEC-DED  code  for the 64-bit-wide data words in the 
main memory uses  eight  check  bits, and any code  chosen  for 
implementation should use a comparable number of check 
bits, as well as a comparable amount of circuitry and number 
of logic  levels.  In addition, the code chosen  must  have error 
correction and detection power near that of a single-bit  SEC- 
DED code, but over groups of four bits. 

The usual solution for error correction and detection over 
groups of b bits is to use a Reed-Solomon  b-adjacent code 
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[ 1 1,  121. The implementations of encoding/decoding circuitry 
in [ 1 11 and [ 121 are based on arithmetic in the finite  field 
GF(26) and are serial in nature. Cocke [ 131 showed that the 
encoding/decoding operations could be performed in the 
prime field  [usually GF(2); thus ordinary Boolean  algebra can 
be  used], and Bossen [ 141 provided an efficient  parallel imple- 
mentation of such codes. The practical difficulty  with such b- 
adjacent codes is that if  b-bit-wide SEC-DED is desired, then 
36 check bits are necessary and  the maximum data length for 
the 3b check bits is 

mmu = b(2' - 1). (1) 

If b = 4, then 12 check bits are necessary, and only 60 data 
bits can be covered by such a code. Carter, Wadia, and Hsieh 
[ 15,  161 introduced (b,k)-adjacent codes with a parallel encod- 
ing technique. These codes use 2b + k bits for a SEC code 
and 3b + 2k bits for a SEC-DED code for groups of data bits 
which are b - k bits wide. As pointed out in [ 161, this type of 
code was primarily designed to overcome the inherent data 
length limitation of b-adjacent codes. A (b,k)-adjacent SEC 
code has a code group width q = b - k, 2b + k check  bits, 
and the maximum number of data bits handled is 

m' = q(26 - I). (2) 

The addition of k check bits increases the maximum number 
of data bits that can be handled by more than a factor of 2k. 
If b = 5 and k = 1, then data in 4-bit-wide groups will  be 
corrected, and  the maximum length of data which  may be 
corrected is 4(3 1) = 124  bits. 

The difficulty  of detecting errors in two distinct b-bit-wide 
groups may be solved as follows. It is well known that error- 
correction codes operating on shortened data have a proba- 
bility  of detecting multiple errors which are not corrected. The 
ability of b-adjacent and (b,k)-adjacent codes to perform such 
detection was  discussed in [ 15, 171 and was  seen to be quite 
high. The double-error detecting ability of a shortened SEC 
code depends on  the shortened code chosen from the SEC 
code of maximum length. For a (b,k)-adjacent SEC code of 
length qd there are 

( 2 b  I )  possible  choices. 

A shortened (b,k)-adjacent SEC code with b = 5 and k = 1 
can correct all 15 error patterns in 4-bit-wide groups, can 
cover as information the 84 bits  needed  for  parallel transmis- 
sion of the 64 data bits and 20 address bits  used in the core 
machine, can detect many double errors involving  two  4-bit- 
wide data groups (with arbitrary data patterns), and uses only 
nine check  bits  for  each  word  in main memory. Since such a 
code satisfies  all the practical  system requirements for  availa- 
bility,  except  possibly  high enough probability of double-error 
detection, it was decided to investigate the properties of such 
a code, devise and compare specific  codes, and determine if 
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Figure 2 Structure of the system. 

the probabilistic four-adjacent double-error detection would 
be  sufficient to fulfill the core system  availability requirements, 
considering the relative probability of occurrence of  single and 
multiple four-adjacent errors. The shortened length chosen 
must have  length 4 X 2 1. There are 

(i;) = 44  352  165  possible  choices  for such a code. 

In the following sections of this paper we  first describe the 
procedure for generating the specific code as well as that of 
exploiting the syndrome to identify the error. The double- 
error-detection properties of the code are then examined, using 
a systematic investigation of the error combinations that allow 
evaluation of the double-error-detection probability. Follow- 
ing that, different implementations of the code are examined 
and evaluated on the basis  of their double-error-detection 
capabilities. These implementations differ by 1)  the coding 
scheme, which  may include only data lines or both data and 
address lines in the generation of the check  bits, the latter 
taking into account faults affecting the commutation modules 
that convey the address lines  in the network; and 2) the 
decoding scheme, which, depending on the use  of the redun- 
dancy of the code, may correct all bits of the codeword or 
may correct data  and check bits only, to satisfy different 
architectural requirements. 

Description of the code 

General background 
Let q = b - k be the code group bit  width for a (b,k)-adjacent 
code. The panty check matrix for  such a code can be written 
as 

H =  I, I, ' ' ' I, 1, 
[c& cb,q ' ' ' cgq 0 b . q  (3) 161 
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Table 1 Correspondence  between  shortened  and complete matrices. 

C ; i 4 ( i )  0 1 2  3 4 5 6 7 8 9 1 0  
C+ ( j )  0 1 2 3 4 30 29 28 27 17 18 

C2.4 ( i )  1 1  12 13 14 15 16 17 18 19 20 . . .  
C3 ( j )  16  19 26 5 6  7 21  20 8 9 . . .  

where I, and 0, represent the identity and null square matrices 
of dimension y ,  O , ,  corresponds to the y,z-dimension  null 
matrix, and  the Cb,, 0 5 i I rn, represent the b,q-dimension 
matrices obtained by deleting the same set  of k columns from 
the b,b matrices CjJ,, 0 I j I 2', corresponding to the powers 
over GF(2) of the nonzero elements of GF(2') [ 15,  161. 

These matrices represent the distinct powers  of the compan- 
ion matrix c b  = c h , b  of the primitive polynomial of  degree  b, 

0 0 . . '  0 0 to 

1 0  0 0 tl 1 
and are characterized by the following  properties: 

1. Cb = (Yi, Yi+',  . . ., Y'+&'), where the YJ, 0 ~j I 2' - 2, 
represent the column vectors  of the successive  powers of 
the root p(x): Y. 

2. C ~ Y J  = Y'+J, for i , j ,  0, 1, . . ., 2 b  - 2. 
3. If Y' + YJ = Y", then C6 + C$ = CF, for i ,  j ,  rn E 

(0, 1, . . .) 2 6  - 2). 

These properties of the  companion matrix allow  for an easy 
derivation of its distinct powers, since w = 2 - 1, C! = Cb = 

I b  1161. 

Construction of the code and derivation of the decoding 
expressions 
As previously mentioned, a consideration of the possible errors 
which  may occur because  of the architecture of the supercom- 
puters being  designed  shows that a single fault in the Omega- 
type interconnection network can cause from one to four 
faults in a group of four adjacent bits in a memory unit. Thus, 
for single-error correction, any of the 15 possible error patterns 
in such four-adjacent groups must be corrected. The super- 
computers have a word  length  of  64  bits,  which must be 
divided into 4-bit code groups. A standard b-adjacent code 

162 with b = 4 cannot be  used since the maximum data length  for 

such a code is 60 bits. Thus a (b,k)-adjacent code with b = 5 
and k = 1 was chosen. This code handles code data groups of 
width q = b - k = 4, and has a maximum data length of  124 
bits. This flexibility in length  is exploited, as  described  in 
subsequent sections. 

The specific  check matrix is  easily deduced from the general 
matrix (3) and can be written as 

where r is determined by the number of data bits that are 
considered by the relation r = rrn/bl - I ,  ( r  I 30). 

The companion matrix is derived from the primitive poly- 
nomial 

p(x) = 1 + x2 + x5, (6) 

and all the distinct powers can be  easily obtained following 
the previously  described method. In practice, the choice of the 
C& among the Cjs can be made arbitrarily, provided that in 
all  cases the same column is deleted. Nevertheless, it has to be 
noted that this choice presents a direct influence on 1) the 
hardware implementation complexity of the code, and 2) its 
multiple group error detection abilities. The constraints re- 
lated to the latter condition cannot be simply identified at this 
stage and are addressed  in the next section. Thus, the selection 
of the matrices was  based on  the first influence only and ended 
in the correspondence between matrices C+ and C& indicated 
in Table 1, where the C;,< are actually obtained by deletion of 
the fifth column in the associated C+. Note that only C;,< 
matrices, which are used in the different implementations of 
the code, have  been considered here. 

The logical equations for the generation of the check  bits 
can be derived easily from the matrix H". In the following, B, 
is  used  in  place  of C&, for  conciseness of the presentation; 
furthermore, the symbols + and Z are used to represent 
addition modulo-2, i.e.,  exclusive-or,  while the symbols . and 
n represent the logical AND operation, v and U represent the 
logical OR, and - represents negation. 

c, = d,J, 0 I j I 3, 
r 

( ~ 4 ,  ~ 5 ,  c6, C7)= = C Bi(di0, drt, dr27 
i 

where (dm, dr l ,  dr2,  dis)T represents the transposed vector of the 
data bits of group i, for i = 0, 1, . . . , r. 

The bits of the syndrome vector (so+,) are then identified 
by 
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i = 0, I ,  . . ., r, (8) 

where  db  and c;, 0 s k 5 8, have  been  used instead of do and 
ck to account for  possible errors that could  affect data and 
check  bits. Considering an error vector (ep,  ejl, eJ2, ej3)', 
corresponding to any error combination that affects data group 
j ,  j = 0, I ,  . . . , r, then the following  expressions  apply: 

(so, S I ,  s2, sdT = (ep, ejl, eJ2,  ejd', (9) 

(sa, SS, s6, s7, SS)' = &(SO, SI ,  s2, S 3 ) T  (10) 

Equation (9) allows the determination of faulty  bits in a group 
that can be identified by  use  of  Eq. (10); the associated group 
pointer is determined by 

G j  (S4r  35, s6, S7, = BJ(so, S I ,  S2, S S ) ~ .  ( 1  1) 

It  has  been  shown [ 161 that if an error exists  in group j ,  G, = 

1 and G, = 0 for  all i # j .  Correction of data bits of group i is 
then obtained from the following equation: 

dqC = d,, + G,s,, 0 5 j 5 3. (12) 

Error control on  check  bits  can be implemented according to 
the following  relations. An error vector (eo,  el,  e2,  e3)T affecting 
check  bit group I (co-c3) results in 

Gs, = 1, n sk = 0, 0 S J  5 3, 4 5 k 5 8, 
k 

which  leads to the determination of the associated group 
pointer as 

GCI = (SO V S I  V S2 V S 3 )  ' (S4  S5 & S7 Sa).  (13) 

In the same way, it can be  verified that pointers for  check  bit 
group 2 (c4-c7) and group 3 ( C s )  are defined  as 

Gc2 = (So S I  S2 33) .  ( S 4  V S5 V S6 V S7)&, , 

Gc, = SO SI S2 S 3  Sq SS 3.5 S7 Ss . (14) 

Correction of the check  bits is then obtained using the follow- 
ing equations: 

CJc = Cl + G ~ I  . SJ = Cj + SJ S4 S5 S6 S7 , O 5 j 5 3, 

C k ,  = ck + Gc2. sk = ck + sk $1 S2 i 3  Sg , 4 5 k 5 7, 

Car = Cn + GC3.Sg = Cg 30 S I  $2 i3 34 is S7 Sg . (15) 

Evaluation of the double-error-detection  probability 
In order to evaluate the efficiency  of the code,  it is important 
to characterize its ability to identify multiple error conditions, 
Le., conditions that affect  more than one group of the code- 
word. Furthermore, multiple-error-detection ability  strongly 
relies  on the amount of redundancy of the code that is not 
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explicitly  used  for correction. As a consequence of the (b,k) 
code organization, no systematic way is known to determine 
the probability of detection of multiple errors [ 161. 

The determination of this probability requires that a de- 
tailed study of the error combinations be performed. As a 
result of the inherent complexity of the procedure, and of the 
relative probability of multiple errors, the study reported here 
has been limited to the consideration of double errors only. 
The procedure consists in the characterization and enumera- 
tion of the various double-error combinations that would 
result  in a wrong correction. 

For example, if one considers a double-error combination 
(ern,  e,l, ei2, e,3) and (ep,  ejl, e,2, eJ3) affecting groups i and j ,  
respectively, the problem  is to identify the cases  when  these 
two errors induce an erroneous correction on group k;  i.e., 
they  can be  viewed as a single equivalent error (em, ekl, ek2, 
ek3). Furthermore, it has to be noted that the error combina- 
tion consisting of (ea, eil, ei2, (ep, ell, eJ2,  e,3), (em, ekl,  em, 
ek3), and all other error bits  equal to zero, forms a valid 
codeword.  Such an approach is  investigated in detail hereafter 
for  each error combination affecting the various groups of 
codewords. For better readability of the presentation, errors 
affecting data bits and check  bits are considered  separately 
and  joint conditions are derived when  possible. 

Errors affecting data bit  groups only 
Basic conditions for miscorrection can  be stated as 

e,, + e,, = ek, + 0, 0 5 rn 5 3, (16) 

where subscripts i, j ,  and k identify distinct data bit  groups 
only. Furthermore, pointer Gk has to be activated (ck = I ) ,  
I.e., 

B ~ S O ,  S I ,  S2 ,  5'3)' = (52, SS, s6, 5'7, (17) 

Considering relation (8) which  characterizes the syndrome 
vector,  it  follows that sm = ek,, and that 

(s4, ss, s6, s7, Sn)' = &(ea,  erl, er2, e,dT + B,(ep,  e,!, eJ2, eJ3)T9 

which  leads to 

= &(So, S I ,  S2, &IT .  (18) 

Equations (16) and (18), as expressed  above, are explicitly 
considering that the double-group error (e,& 0 5 rn 
5 3, is equivalent to the single-group error (ek,,JT, which 
induces miscorrection of group k. Nevertheless,  two more 
analogous conditions have to be considered,  which  can  be 
obtained by rotation of subscripts i ,  j ,  and k, i.e., 

(e,,)' + ( e d T  -+ 
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One should note  that this remark holds for the other cases 
that are investigated hereafter in this section. 

One single error which affects the check bit  groups 
The cases corresponding to the three groups forming the check 
bits are described  successively. 

Error affecting thefirst group (co-c3) 
In this case, the conditions to be considered can be expressed 
as 

ei, + ej, = e,  f 0, 0 I m I 3; 

and from (81, it follows that s, = 0, which  leads to 

Bi(en, eil, eiz, + Bj(ep, eji, eJ2, e,dT 

(19) 

= (0,  0,  0,  0, O)? (20) 

From a practical point of  view, it is important to note that 
conditions (1 9)  and (20) can be expressed  analogously  as 
relations (16) and (1 8) respectively,  provided that 1) the error 
vector affecting the first check bit group is represented with 
the same notation as for data bit groups, and the subscript 16 
is introduced, i.e., e,  = eI6,, and 2) the null matrix 0 5 . 4  is 
included in the set  of  values  of the shortened “B” matrices, 
i.e., B,+, = 05,4. The number of double-group error combi- 
nations satisfying the conditions stated by relations (1 7 )  and 
( 19) is denoted N-. 

Error affecting  the second group (c4-c,) 
It can be  easily  verified that this case corresponds to 

e,, + e,, = 0, 0 I m I 3; 

and from relation (8), it follows that 

M e a ,  eil, ei2, ~ 3 ) ~  + B,(e,, e i l ,  eJ2, e,,)‘ = (e4, e5, e67 e7, OIT, 

which leads to 

(B, + &)(en, ell, eiz, = (e4, e5, e6,  e7, 0lT. (22) 

Error affecting the  third  group  (bit  c8) 
The conditions that need to be  satisfied  here are defined by 

e,, + e,, = 0, 0 5 m 5 3,  

and 

B,(ea, eil, eiz, + B,(ep, ejl, e,2, = (0, 0, 0, 0, 

that is, 

(B, + B,)(ea, eil, e,2, e# = (0,  0, 0,  0, 1)‘. (24) 

It  has to be noted that conditions imposed by relations (22) 
and (24) can be considered jointly, provided that the error 
vector considered covers the error combinations just identi- 
fied. Hereafter, NG is  used to denote the number of such 
combinations. 

(21) 

(23) 

Two errors which affect the check bit groups 
Here also, we distinguish the consequences of the errors 
affecting the various check bit groups. 

Errors affecting  groups I and 2 
According to the form of the check matrix H”, the conditions 
for miscorrection correspond to 

e,, = e,, 0 I m 5 3,  

&(en, G I ,  eiz, e,3Y = (e4, e5,  e6,  e7, O)? (25) 

Errors affecting  groups I and 3 
The conditions to be  verified correspond to 

ei, = e,, 0 5 m 5 3, 

&(em, eil, ei2, ~ 3 ) ~  = (0,  0, 0, 0, (26) 

Errors affecting  groups 2 and 3 
According to the inherent properties resulting from the con- 
struction of the code, it is important to note that any double- 
error combination (e4,  e5,  e6, e7, 0), e8 = 1, affecting groups 2 
and 3, represents an error vector on five adjacent bits that is 
perfectly identifiable and is thus correctable. It  follows that 
such a form of error cannot induce erroneous correction on 
another single group of a codeword; in effect, in this case, the 
syndrome bits so+, are all equal to zero. 

However, the benefit that can be expected from this added 
double-error-correction ability, resulting from the considera- 
tion of bits c4-c8 as a “single” group, has to be weighted  with 
respect to the following points: 1) only 15 combinations on 
the total set  of  possible double-group error combinations are 
concerned, 2) due to the physical implementation of the 
system (groups of four bits), such a “single” error event is 
significantly  less  likely to occur than any actual single error 
event, and, moreover, 3) this “single” error is  as  likely to occur 
as any double error affecting other groups, which induces a 
tremendous increase in the number of miscorrections in the 
cases  where these two errors have the same characteristics as 
a “single” error affecting  check  bits c4-c8. Such  cases can be 
identified by the following  relations: 

eim + e,, = 0, 0 5 m I 3,  

(B, + B,)(ea, e t l ,  e,2, e d T  = (ea, es, e67 e7, 1IT, (27) 

which are definitely much less  restrictive than the just-men- 
tioned limitation to 15 correctable combinations. 

This explains the reason  for limiting the correction ability 
of the code to single groups. Therefore, no case  for  miscorrec- 
tion has to be considered for double errors affecting  check  bit 
groups 2 and 3, as they result in the activation of the two 
associated pointers and  thus can be detected. The number of 
non-detected double-error combinations which  affect the 
check  bit groups is denoted N q .  
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Determination of the  double-error-detection probability 
A program  has  been  developed  which  includes the three sets 
of conditions previously  defined, in order to identify 
Nm, N-, and NG. It  is important to note that all other 
double-error combinations will be detected hence, the double- 
error-detection probability is derived by reference to the total 
number of double-error combinations Nde. The determination 
of Nde is  made  easy  by considering that the double-error 
combinations are characterized by the following: 1)  if Cg is 
safe, the selection of two error groups among the remaining r 
+ 3 groups that constitute a codeword; and 2)  if cs is faulty, 
the choice of one group among r + 3. In both cases, it is 
considered that each group consists of four-adjacent bits, 
which corresponds to 15 distinct combinations. It follows that 
Nde is  given  by 

Nde = ( I ;  ') X 15* + ( I t  ') X 15. 

Considering that all double-error combinations have a con- 
stant density function, the probability of double-error detec- 
tion can thus be expressed as 

The numerical evaluation of this probability  is  strongly  related 
to the actual implementation of the code that was  discussed 
previously. The description of three different  coding  schemes, 
as well as the evaluation of their respective error-detection 
ability, based on results introduced in this section, is presented 
in the next  section. 

Selection of a coding  scheme 
As implicitly stated in previous  sections, a straightforward 
implementation of the code would  consist in the consideration 
of data bits  only (mb = 64) in the generation of check  bits. 
However, the network  also  conveys m.' = 20 address  bits for 
selecting the memory word  from  each memory module. An 
extension of the monitored lines to these  address  lines  is  made 
possible without an increase in the number of check  bits  since 
mb + m.' < 124. This is  desirable in order to enhance the 
range  of  covered  faults. Figure 3 illustrates the general  orga- 
nization of the coding  scheme  for the two  cases just discussed. 

These schemes are investigated in detail subsequently  with 
respect to their capability  for error detection. Furthermore, an 
estimate of the hardware complexity of the considered  imple- 
mentations is indicated as well,  based on the coding/decoding 
equations presented  earlier. 

Consideration of data bits only 
Such a scheme  allows for the correction of 1)  all memory 
faults that affect any single four-adjacent-bit groups in a word, 
and 2) network  faults  affecting any single commutation mod- 
ule that conveys data and check  bits.  However, no detection 

Figure 3 General  coding/decoding  scheme. 

Table 2 Number of nondetected  double  errors-monitoring of data 
bits only. 

14280 
- 

2835 390 

is  provided for errors on address  bits  resulting  from either 
faults  affecting the address decoding in memory  modules or 
the commutation modules  conveying the address  lines.  De- 
spite this strongly  restrictive  range of covered  faults, this 
scheme  is interesting, as it is characterized by the more efficient 
ability to cope  with double-group errors, and the associated 
figure  for double-error-detection probability  is used  as an 
optimal reference benchmark for subsequently  considered 
schemes. This property is directly  related to the fact that only 
half  of the redundancy potentially available is  used. 

In this case, r = 15, and thus the value of the total number 
of double-error combinations is  easily  derived  from  relation 
(28) and is equal to Nde = 34  695. The associated numbers of 
nondetected double-error combinations derived  from condi- 
tions introduced previously are given  in Table 2. Application 
of relation (29) leads to P d d  = 49.55  percent.  It  is important 
to note that this value is independent of the mode of imple- 
mentation of the decoding  scheme,  since, in this case, redun- 
dancy provided by the code has to be  fully  used to correct  all 
codeword  bits. 165 
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Figure 4 Basic implementation.  [Note: Error forms are  denoted  by 
(1 )  no error, (2) single group error,  and (3) noncorrectable  errors.] 

As far as the hardware complexity of this implementation 
is concerned, about 500 two-input logical functions were 
identified, among which almost three-fourths are exclusive-or 
functions. This value  serves  also as a reference benchmark for 
comparison with other implementations. 

Inclusion of address bits 
The main advantage of the inclusion of the address bits in the 
generation of the code  is the added ability to cope  with 
addressing errors resulting from faults  affecting both memory 
and commutation modules.  Address  bits are not stored, and 
only  check  bits corresponding to the data and the address of 
the word in which  they  reside are stored, as indicated in Fig. 
3. Identification of addressing errors is then made possible 
when monitoring the syndrome vector.  In  practice,  all  address- 
ing  faults cannot be detected because of 1) the inherent 
limitation of code redundancy with  respect to multiple faults, 
and 2) the different  behaviors  associated  with  read and write 
cycles. The first point has already  been  discussed; we stress 
here the difference that results  whether the first manifestation 
of the fault occurs during a write  cycle or a read  cycle. This 
helps to identify the strengths and weaknesses  of the scheme. 

Let us consider first an addressing error occumng during a 
write cycle in the memory word of address X that results in a 
write in location previous data and check  bits contained in 
Y(DC,) are overwritten by the new content (DC,) that was 166 
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addressed to X .  In order to examine the consequences of this 
error on further read attempts, we distinguish  two  cases, 
considering that the initial fault is either permanent or tran- 
sient. 

If the fault is permanent, all further attempts to address X 
will attain Y, whose content is DCX. No error indication will 
appear in the processing  of the syndrome, which  is  acceptable 
since  expected data have  been  reached. On the other hand, 
any attempt to address Y in order to retrieve DCy will deliver 
DC,, which  makes  reference to address X in the memorized 
check  bits. Thus, the concatenation of address bits  sent Y and 
delivered information DC, constitutes an invalid  codeword 
(in the limit of the inherent redundancy of the code), and the 
error can be  identified. 

Transient addressing faults considered  here correspond to 
faults that vanish  before any further read  cycle  is performed. 
In this case, it is  still  possible to reach location X, but retrieved 
content DCi corresponds to the old  value  of the variable that 
has been stored in Y by error; such an error cannot be 
identified by the proposed  scheme, as concatenation of X and 
DCi is a valid  codeword.  However, any attempt to access the 
data initially stored in Y(DCy)  induces the same consequences 
as in the case  of permanent faults. 

In the case  of an addressing fault, either transient or per- 
manent, occumng during a read cycle of location X that 
results in the access  of the content of Y (DCY), it can be 
verified that concatenation of retrieved content DCy and 
address sent X constitutes in both cases a nonvalid  codeword 
and is thus identifiable. 

It is also important to note that another consequence of the 
inclusion of the address bits in the generation of the check 
bits is constituted by the reduction of the double-errordetec- 
tion probability of the code; this follows  from the related 
increase of 1) the number of groups to process to generate the 
check bits, which  leads to r = 20, and 2) the number ofdouble- 
error combinations to account for, which  is equal to Nded = 
52 270. However, as opposed to the case  where  only data bits 
are considered, it is important to note that, due to the specific 
consequence of address faults that were just identified,  only 
the detection and diagnosis of faults that affect address bits 
are of practical interest. Two implementations of the decoding 
policy  have  been considered, and these are now described and 
evaluated. 

Basic implementation 
The basic principle of this implementation is illustrated in 
Figure 4. As previously  discussed, during a memory read 
cycle,  check  bits  related to the address sent and data read from 
memory are compared to the stored  check  bits in order to 
obtain the syndrome vector. Syndrome analysis  allows  for 1)  
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identification of the error form, and 2) generation of the group 
pointers according to equations presented  previously.  Study 
of the different error forms results in the distinction of three 
principal  cases  identified in Fig. 4. 

1. No error indication appears and data are directly  delivered 
without entering the correction circuit. 

2. A single group error is diagnosed and all the bits (data + 
address + check)  pass through the correction circuit to 
restore the erroneous group; corrected bits are then sent 
back to the syndrome generator and equality to zero of the 
output is tested  before  corrected data are delivered to the 
processor  module. This feedback-type correction is known 
as the wraparound correction [ 181; it ensures that the 
corrected  word constitutes a valid  codeword and allows 
detection of faults that could occur in the correction state. 

3. This case corresponds basically to noncorrectable errors 
(double error, for example); an interrupt signal  has to be 
generated  in order to process this case  by investigation of 
error characteristics. Note also that this form of error 
diagnosis  must include any error (yet  single) in the address 
bit  groups. 

According to this implementation, for  which correction of 
all bits  is  performed  before data are delivered in the case  of 
single-error indication, conditions for  miscorrection  resulting 
from double errors that were presented  previously are still 
valid,  provided that 1)  five supplementary shortened matrices 
are included  in the set  of “BT matrices, where i = 0, I ,  . . . , r 
= 20,  according to the correspondence stated in Table I ,  and 
2) address  bits are characterized by 4 k ,  with 16 5 j 5 20, 0 5 

k 5 3. Moreover, as previously considered, this set  may  be 
extended  with a null matrix denoted B,+l. 

It  follows that this implementation leads to the numbers of 
nondetected double-error combinations indicated in Table 3. 
Thus, the value of the probability of double-error detection is 
P d d  = 34.27  percent. This figure  shows that the obtained 
benefit in addressing error identification, resulting  from the 
inclusion of address bits in the generation of the check  bits, 
results in a relative P d d  decrease of more than 30 percent  in 
this implementation. 

Considering the hardware  overhead  associated  with this 
implementation, a basic estimation leads to 744 two-input 
functions, which corresponds to a relative  increase of 48 
percent  with  respect to the previous implementation. 

Modlfied implementation 
The major cause in the significant degradation of p d d  observed 
for the previous implementation lies in the constraint imposed 
by the wraparound correction, which requires that correction 
be applied on all  groups. A modification of the implementa- 
tion which eliminates the wraparound correction has  been 
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Figure 5 Modified implementation. (Note: Error forms are denoted 
by A, single error on data bits; B, no error or single error on check 
bits; C, single error on address bits or noncorrectable error.) 

Table 3 Number of nondetected double errors-monitoring of data 
and address bits-basic implementation. 

N Z  N G  

32208 4935 490 

investigated in order to improve the probability of double- 
error detection. The modified implementation is  described in 
Figure 5. Furthermore, two important points justify this mod- 
ification: 1) it  is not necessary that corrected check  bits be 
delivered to the processor modules, and thus no correction 
circuit is needed for the check  bits, and 2) activation of 
pointers corresponding to address groups has to initiate an 
error processing at the system  level. The latter point is inter- 
esting  since  it  involves a double error leading to erroneous 
identification of a single error on the address groups resulting 
in a detection decision (with possible erroneous diagnosis) but 
not in a miscorrection leading to system  failure.  It  follows that 
conditions on nondetected double errors become  more  restric- 
tive than the ones  presented  previously.  These new conditions 
are now  investigated. 

Modifications of conditions imposed by relations (16), ( 18), 
and (20) correspond to the limitation of variation of subscript 
k to k 5 15 and k = 21; furthermore, it is important to 
remember that these relations explicitly  represent the case 

i + j - + k ;  V i , j = O ,  I ,  ..., 21; i#j. 

For the two other cases  deduced by rotation, it  follows that 

j + k + i ,  i 5 15, i = 21; 

V j , k = O ,  1, . . . ,  21; i # j ,  

and 

k + i + j ,  j 5 15, j = 21; 

V k , i = O ,  1, ..., 21; k #  i. 167 
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Table 4 Number of nondetected double errors-monitoring of data 
and  address  bits-modified  implementation. 

249 17 4149 462 

Modifications of conditions (22) and  (24) require considera- 
tion of only the following  cases,  where cgi identifies  check  bit 
group i: 

Finally, conditions (25) and (26) have to be restricted with 
respect to the variation of subscript i in the cases  where the 
resulting error affects address bits,  which leads to 

The associated numbers of double-error combinations that 
will be miscorrected are given in Table 4; this leads to a 
probability of detection of double group errors equal to Pded 
= 48.44 percent, which compares very  well with the bench- 
mark figure corresponding to the classical implementation of 
the code. This figure  clearly  shows the efficiency  of the modi- 
fied implementation. 

The hardware overhead to consider in this case is charac- 
terized by an increase of 32 percent with  respect to the 
estimation presented for the case  where only data bits are 
monitored in the construction of the code. 

These results, along with the address-error-detection abili- 
ties of this code, clearly  show the efficiency  of this modified 
implementation. 

Conclusion 
An  efficient error-correcting scheme designed to be imple- 
mented on a supercomputer system has been presented. The 
problem of primary memory data error protection is crucial 
in such systems due to  the unusually large capacity and the 

168 complexity and length of computations to be performed. 

Based on structural considerations inherent in the system, 
the considered code is a shortened redundant (5,l)-adjacent 
code intended for  single four-adjacent error correction. Such 
a code has  been  selected  mainly  for its ease  of derivation and 
implementation. Different schemes for application of the code 
have  been  investigated and evaluated, taking into account 
both the range of faults covered and  the double-error-detection 
property. From this study, a preferred  scheme that includes 
both data bits and address bits  in the construction of the code 
has been selected. In particular, it has  been  shown that such a 
scheme compares very  well, on  the basis  of double-error- 
detection capability, with a classical coding scheme for which 
only data bits are considered in the generation of the check 
bits; the evaluation indicated a relative degradation of  less 
than 2.5 percent. Moreover, another main advantage of this 
scheme is its ability to detect addressing errors. Quantitative 
evaluation of the efficiency  of this added detection ability is 
difficult  because, as it has  been shown, it relies  heavily on both 
the  time characteristics of the errors and the sequencing of 
write and read  cycles.  Nevertheless, as indicated by the pre- 
sented qualitative study, a large proportion of addressing faults 
can be detected; clearly these detection properties are limited 
by the inherent redundancy provided by the code. 

As a closing remark, it  is important to stress that such an 
error-correcting scheme, including both data  and address bits 
in the generation of check bits, and characterized by an 
implementation based on the correction of data  and check 
bits only, constitutes an efficient mechanism that allows for 
1)  correction of memory and network single four-adjacent 
errors, 2) detection of a large proportion of  single four-adjacent 
addressing errors, and 3) detection of about half of double 
four-adjacent errors affecting either data, address, or check 
bits. 
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